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combination with association mapping revealed absence of 
large effect QTL impeding an efficient pyramiding of dif-
ferent resistance loci through marker-assisted selection. The 
prediction ability of genomic selection was high amount-
ing to 0.6 for FHB and 0.5 for STB resistance. Therefore, 
genomic selection is a promising tool to improve FHB and 
STB resistance in wheat.

Introduction

Fusarium head blight (FHB), caused by Fusarium gramine-
arum, and Septoria tritici blotch (STB) caused by Zymosep-
toria tritici (teleomorph Mycosphaerella graminicola) 
severely impact wheat production worldwide. Occurrence 
of both diseases entails a reduction of grain yield and qual-
ity (Buerstmayr et al. 2009; Miedaner et al. 2013). Efforts 
to control FHB and STB comprise crop rotation, soil till-
age, fungicide application, and cultivation of resistant vari-
eties (Yuen and Schoneweis 2007; Kutcher et al. 2011; Wil-
lyerd et al. 2012). Fungicide applications against FHB are 
only operative in a narrow time window (Paul et al. 2010). 
Moreover, strobilurins, the most widely applied fungicide 
class against STB, are no longer effective due to mutations 
in the highly variable pathogen population of Mycosphaere-
lla graminicola (Torriani et al. 2009). Consequently, breed-
ing of varieties resistant against FHB and STB is the most 
sustainable approach to combat both diseases.

Reliable high-throughput phenotyping based on artifi-
cial inoculation has been developed to monitor FHB resist-
ance and is routinely deployed in wheat breeding programs 
(Miedaner and Korzun 2012). In contrast, for STB resist-
ance, artificial inoculation is challenging, because of the 
strong dependency of the disease pressure on temperature 
and humidity. In addition, artificial inoculations are for 
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both diseases labor-intensive necessitating phenotyping in 
multi-environmental trials (Miedaner et al. 2012).

Marker-assisted selection has been promoted as a prom-
ising alternative to phenotypic selection to decrease FHB 
and STB susceptibility in wheat (Miedaner et  al. 2009; 
Agostinelli et  al. 2012). The success of marker-assisted 
selection for both traits, however, is in Europe so far lim-
ited mainly due to absence of major effect loci in elite 
germplasm and the small to medium population sizes used 
for QTL detection (Holzapfel et al. 2008; Buerstmayr et al. 
2009; Löffler et al. 2009; Miedaner et al. 2011; Miedaner 
and Korzun 2012). Use of large effect QTL originating 
from exotic donors is impeded by difficulties to get rid of 
linkage drag and/or negative pleiotropic effects (Becher 
et al. 2013).

Genomic selection has been proposed as a powerful 
tool to enhance prediction accuracy of FHB (Rutkoski 
et  al. 2012) and STB resistance (Miedaner et  al. 2013). 
In genomic selection, the complex genetic architecture 
is properly handled and genetic relatedness is addition-
ally exploited to predict the performance of non-pheno-
typed lines (Habier et  al. 2007). Recent studies based on 
a population of nearly 2000 wheat hybrids demonstrated 
the potential to enhance FHB and STB resistance through 
genomic selection (Miedaner et  al. 2013; Mirdita et  al. 
2015). Experimental findings for wheat inbred lines are 
based on small populations ranging from around 200 (Rut-
koski et al. 2012) to less than 400 genotypes (Jiang et al. 
2015). The magnitude of prediction accuracies is despite 
the small population sizes encouraging. A large-scale study 
on the potential and limits of genomic selection to improve 
FHB and STB resistance, however, is still lacking.

Experimental studies on the accuracy of genomic selec-
tion in wheat were often restricted to prediction approaches 
modeling additive (e.g., Rutkoski et al. 2012; Ornella et al. 
2012; Bordes et al. 2014) and dominance effects (Zhao et al. 
2013, 2014). Additive and dominance effects are, how-
ever, only one component of the genotypic value which 
also involves epistatic effects (Falconer and Mackay 1996). 
Genomic selection models have been proposed considering 
besides main also epistatic effects (Xu 2007; Cai et al. 2011; 
Wittenburg et  al. 2011; Wang et  al. 2012). Implementing 
these approaches is hampered mainly because of the high 
computational load especially if a large number of markers 
are available (Jiang and Reif 2015). An attractive solution to 
reduce the computational load is using an extended genomic 
best linear unbiased prediction model (EG-BLUP) which is 
equivalent to a ridge-regression BLUP explicitly modeling 
epistasis (Jiang and Reif 2015). A further promising alter-
native is to apply kernel Hilbert space regression (RKHSR; 
Gianola et  al. 2006) which also captures epistatic effects 
among markers (Gianola and van Kaam 2008; Morota and 
Gianola 2014; Jiang and Reif 2015).

Our study is based on a large experimental data set of 
2325 wheat inbred lines of a commercial breeding program 
genotyped with 12,642 SNP markers and phenotyped in 
multi-environmental trials for FHB and STB resistance as 
well as for plant height. Our objectives were to (1) investi-
gate the impact of plant height on FHB and STB severity, 
(2) examine the potential of marker-assisted selection, and 
(3) study the prediction ability of genomic selection mod-
eling main and epistatic effects.

Materials and methods

Plant materials and field trials

A total of 2325 European winter wheat (Triticum aestivum 
L.) lines adapted to Central Europe were used for this study 
and visually evaluated for FHB and STB resistance in sepa-
rated plots. Genotypes were advanced breeding lines of the 
breeding company KWS LOCHOW GmbH (Bergen, Ger-
many) as well as registered varieties. The 2325 lines were 
evaluated in multi-environmental field trials for FHB resist-
ance in the years 2012 and 2013 in up to five environments 
(Table S1) with 154 lines tested in both years. The entries 
were divided into 16 individual trials connected through five 
common checks (Cubus, KWS Erasmus, Julius, JBAsano, 
Colonia). The experimental design for each trial was an alpha 
design with two replications per location with the number of 
entries per trial ranging from 36 to 308. Plot size was 0.5 m2 
and sowing density was 350 grains m−2. Genotypes were 
artificially spray-inoculated as described in detail by Kollers 
et al. (2013). Spray inoculations were performed with 50,000 
spores per mL of Fusarium graminearum and Fusarium cul-
morum isolates (1/3 F.g.:2/3 F.c.) using a water volume of 
600 L ha−1. Inoculum production followed established pro-
tocols (Miedaner et al. 1996). Briefly, directly before inocu-
lation, wheat kernels were rinsed off with tap water. Spores 
were counted and diluted for spray inoculation with a com-
mon plot sprayer. To compensate for different flowering 
times of the wheat lines, inoculation was carried out four 
times starting with the first 10 % of genotypes flowering and 
an interval of 3–4  days. This procedure should permit the 
inoculation of each genotype at least once at full flowering 
(GS65–GS69; Zadoks et al. 1974). FHB infection was visu-
ally scored as the percentage of infected ears per plot in an 
ordinal scale ranging from 0 (fully resistant) to 100 (fully sus-
ceptible). For resistance comparison, the arithmetic mean of 
all individual ratings over the recording dates was used.

The 2325 lines were additionally evaluated in multi-envi-
ronmental field trials for STB disease severity in up to 11 and 
plant height in up to nine environments in the years 2012 and 
2013 (Table S1). The entries were divided into 16 individual 
trials connected through five common genotypes (Cubus, 
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KWS Erasmus, Julius, JBAsano, Colonia). The experimen-
tal designs were again alpha designs. In all environments, the 
disease scoring was based on natural infection. STB disease 
severity was visually scored plot wise as coverage of flag 
leaves with lesions bearing pycnidia on a scale from 1 (fully 
resistant) to 9 (fully susceptible). Plant height was measured 
in centimeters from soil level to the top of the ear at one 
time point after heading in each environment referring to the 
guidelines for official variety testing in Germany.

Phenotypic data analyses

We performed an unweighted two-stage phenotypic data 
analysis. In the first stage, we analyzed the data for each 
environment separately using a linear mixed model including 
genotype, trial, replication, incomplete block, and residual 
effects. The repeatability in each environment was estimated 

as 
σ 2
G

σ 2
G+

σ2e
R

, where σG
2 refers to the genotypic variance, σe

2 is 

the residual variance and R denotes the number of replica-
tions for each genotype. The corresponding variance compo-
nents were estimated by the restricted maximum likelihood 
(REML) approach assuming that all effects are random. To 
estimate the adjusted mean for each genotype in each envi-
ronment, we fitted an alternative model with fixed genotypic 
effects. Then, in the second stage, we combined the adjusted 
means of the genotypes for all environments and fitted 
again a linear mixed model with genotype, environment and 
residual effects. The heritability on the line mean basis was 

estimated as h2 =
σ 2
G

σ 2
G+

σ
−2
e
E

, where σG
2 refers to the genotypic 

variance, σ−2
e  is the residual variance, E denotes the number 

of environments tested for each genotype. Since our data was 
unbalanced, we obtained the expected heritability for subsets 
of genotypes tested in any specific number of environments. 
Moreover, we estimated the average heritability setting E as 
the mean across genotypes. As in the first stage, we first fit-
ted the model with all random effects to estimate the vari-
ance components. Then, we fitted another model with fixed 
genotypic effects to obtain the best linear unbiased estima-
tion (BLUE) of the genotypic value for each genotype across 
environments. All linear mixed models were implemented 
using ASReml-R (Gilmour et  al. 2009). Note that we used 
the BLUEs of genotypes in subsequent analyses instead of 
best linear unbiased prediction (BLUP). BLUEs are in con-
trast to BLUPs non-shrinked estimates of the genotypic val-
ues, which is an important property for further analyses in 
genomic selection or association mapping.

Genotypic data analyses

The wheat lines in 2012 were genotyped by a 9  k SNP 
array based on an Illumina Infinium assay (Cavanagh et al. 

2013), while the lines in 2013 were genotyped by a 90 k 
SNP array based on an Illumina Infinium assay (Wang 
et  al. 2014) (Illumina, San Diego, CA, USA). Only 154 
lines were tested in both years. We imputed the missing 
genotypic data, i.e., markers present on the 90 k but absent 
on the 9  k array using the IMPUTE2 algorithms (Howie 
et al. 2009; He et al. 2015). After quality control for minor 
allele frequency above 0.05 following Zhao et  al. (2014), 
12,642 SNP markers remained as the final genotypic data 
for all 2325 lines.

We estimated the Rogers’ distances (Rogers 1972) 
for each pair of lines using the imputed marker data. The 
genetic similarity for a pair of lines was calculated as one 
minus the Rogers’ distance. A hierarchical cluster analysis 
was performed based on the matrix of pair-wise one minus 
Rogers’ distances.

Genome‑wide association mapping and marker‑assisted 
selection

Association mapping was performed using following linear 
mixed model (Yu et al. 2006):

where y is the vector of BLUEs for each genotype across 
environments, μ is the vector of common intercept term, α 
is the effect of the marker under consideration, m denotes 
the vector of marker indices, g is the vector of genotype 
effects, Z is the corresponding design matrix, and e is the 
residual term. We assumed that the marker effect is fixed 
and all other effects are random. The population structure 
was controlled by assuming g ∼ N(0,Gσ 2

G), where σG
2 

refers to the genotypic variance estimated by a maximum 
likelihood (REML) approach. G is the genomic relation-
ship matrix estimated based on the marker data following 
VanRaden (2008) as G =

WW ′

2
∑p

k=1 pk(1−pk).
, where W = (wij) 

is an n × p matrix with wij = xij − 2pj and xij is the number 
of a chosen allele at the j-th locus for the i-th genotype, pj 
denotes the allele frequency of the j-th marker. Significance 
of marker–trait associations was tested based on the Wald 
F statistic.

The prediction ability of marker-assisted selection was 
evaluated by fivefold cross-validation with a total of 100 
cross-validation runs, using the full data set combining all 
lines across two years. In each run of cross-validation, the 
lines were randomly divided into five subsets. Four of the 
five subsets were used as the estimation set and the remain-
ing one formed the test set. The procedure was repeated 20 
times, yielding in total 100 different combinations of esti-
mation and test sets. In practice, 100 runs of cross-valida-
tion led to stable estimation of prediction ability and have 
been applied in a number of previous studies (e.g., Zhao 

y = µ+ mα + Zg+ e
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et al. 2014; Jiang et al. 2015). For each estimation set, we 
performed association mapping and recorded the detected 
QTLs under six different significance thresholds. Then, for 
each threshold, a multiple linear regression model was fitted 
in the estimation set with detected significant markers. The 
effects of the significant markers were estimated and then 
used to predict the genotypic values of the lines in the test 
set. The cross-validated prediction ability was calculated as 
the Pearson product–moment correlation between predicted 
and observed genotypic values of the lines in the test set.

We also calculated the effective number of significant 
markers as proposed by Jiang et al. (2015). This parameter 
was estimated as following: we first performed principal 
component analysis with the significant markers among the 
lines (in the estimation set), and then extracted the minimal 
number of principal components needed to portray 95 % of 
the total variation. Calculations were done with the statis-
tical software R (R Core Team 2014) and the R package 
GAPIT (Lipka et al. 2012).

Genomic selection

Four genomic selection models, including two additive and 
two epistatic models, were applied to evaluate the prediction 
accuracy. The ridge-regression best linear unbiased predic-
tion (RR-BLUP; Whittaker et  al. 2000; Meuwissen et  al. 
2001) and Bayes-Cπ (Habier et al. 2011) only consider addi-
tive effects of markers. While the reproducing kernel Hil-
bert space regression (RKHS; Gianola and van Kaam 2008) 
and extended genomic best linear unbiased prediction (EG-
BLUP; Jiang and Reif 2015) exploit both the additive and 
additive × additive epistatic effects among markers.

Let n be the number of genotypes, p be the number of 
markers and l be the number of environments. The RR-
BLUP model has the form y = 1nµ+ Xα + e, where y is 
the vector of BLUEs of genotypic values obtained in the 
phenotypic data analyses, 1n denotes the vector of 1′s, μ 
is the overall mean, α is the vector of additive effects of 
markers, X =  (xij) is the n × p matrix of markers with xij 
being the number of a chosen allele at the j-th locus for 
the i-th genotype, and e is the residual. In the model, we 
assumed that marker and residual effects are random 
and α ∼ N

(

0, σ 2
α

)

, e ∼ N(0, σ 2
e ), where σ 2

α = σ 2
G
/

p and 

σ 2
e = σ 2

R
/

l. Note that σ 2
G and σR

2 are the estimated genotypic 
and residual variance components in the phenotypic data 
analyses. The estimation of α is given by the mixed model 
equations (Henderson 1975).

The Bayes-Cπ model shares the basic setting 
y = 1nµ+ Xα + e with RR-BLUP. An additional ran-
dom variable π, whose prior distribution is uniform on 
the interval [0, 1], is introduced to the model. The marker 
effect α is assumed to be zero with probability π and 

α ∼ N
(

0, σ 2
α

)

 with probability (1–π). The variance σα
2 has 

a scaled inverse Chi-squared prior distribution. The prior 
distribution of the residual is e ∼ N(0, σ 2

e ) and σe
2 also 

has a scaled inverse Chi-squared prior distribution. The 
parameters in the model were inferred via a Gibbs sam-
pler algorithm, which was run for 10,000 cycles. The first 
1000 cycles were discarded as burn in and the samples of 
α from all later cycles were averaged to obtain estimates 
of the marker effects.

The RKHS model is of the form y = 1nµ+ Zg+ e, 
where y, 1n, μ and e are the same as in the RR-BLUP model, 
g is the vector of genotypic values and Z is a design matrix 
allocating phenotypic records to genotypes. We assumed 
that g ∼ N(0,Kσ 2

g ), where K = (k(xi, xj)) is an n  ×  n 
semi-positive definite matrix whose entries are functions of 
marker profiles of pairs of genotypes. In this study, we chose 
the Gaussian kernel matrix K, i.e., k(xi, xj) = exp

[

−
xi−xj
h

]

. 
We used the kernel averaging method to optimize the value 
of h and the Bayesian approach to estimate the parameters 
in the model (de los Campos et al. 2010).

The EG-BLUP model has the form 
y = 1nµ+ Zg1 + Zg2 + e, where y, 1n, μ, e and Z are 
the same as in the RKHS model. g1 denotes the vector 
of additive genotypic values and g2 is the vector of addi-
tive × additive epistatic genotypic values. We assume that 
g1 ∼ N(0,Gσ 2

g1
) and g2 ∼ N(0,Hσ 2

g2
). G denotes the n × n 

genomic relationship matrix among all genotypes calcu-
lated as in VanRaden (2008), which is the same as in the 
association mapping. H is the epistatic relationship matrix 
defined as G#G (Henderson 1985), where # denotes the 
Hadamard (element-wise) product of matrices. Parame-
ters were estimated using the Bayesian approach with the 
multi-kernel method (Pérez and de los Campos et al. 2014).

The prediction abilities of the four models for each 
trait were evaluated in a fivefold cross-validation scheme 
as in the marker-assisted selection. The ability of predic-
tion was defined as the correlation between observed and 
predicted genotypic values of the lines in the test set: 
rGS = cor

(

ypred, yobs
)

.
The RR-BLUP and the Bayes Cπ model were imple-

mented using R (R Core Team 2014). The RKHS and 
EG-BLUP model were implemented using the R package 
BGLR (Pérez and de los Campos 2014).

Results

Genetic diversity of the panel of 2325 elite winter wheat 
lines

The 2325 wheat lines were fingerprinted using 12,642 
polymorphic SNP markers. The minor allele frequencies 
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averaged 0.24 with a 1st quantile of 0.12 and a 3rd quan-
tile of 0.34 (Fig. 1). The heat plot of the genetic similarities 
among the 2325 lines revealed an absence of a clear sub-
population structure (Fig. 2) with a wide range of values of 
one minus Rogers’ distances approximating a normal dis-
tribution (Fig. S1). This was further supported by a PCoA 

analysis which revealed that the first principal coordinates 
explained only small proportions of the total molecular var-
iation (Fig. S4).

Fusarium head blight and Septoria tritici blotch 
severity

The evaluation of the single environments revealed high 
repeatability values for FHB severity with a range from 
0.74 to 0.95 and moderate to high repeatability values for 
STB severity ranging from 0.56 to 0.92 (Fig. S2). Repeat-
ability values for PH ranged from 0.8 to 0.9. The genetic 
variance was significantly (P  <  0.01) larger than zero 
for all three traits. Moreover, we observed a wide varia-
tion of BLUEs (Fig. 3). The shape of the distribution for 
FHB and STB severity approximated a normal distribu-
tion, which is typical for a quantitative disease resistance. 
The Pearson moment correlation of the BLUEs estimated 
across environments between FHB and for STB disease 
severity was low and amounted to 0.12. Correlations 
between FHB and STB disease severity and plant height 
were negative and low and amounted to −0.15 and −0.17, 
respectively.

Marker‑assisted and genomic selection

The prediction ability of marker-assisted selection increased 
monotonically with relaxed significance thresholds up 
to an optimum P value of 0.01 for all three traits (Fig. 4). 
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Fig. 1   Distribution of the minor allele frequency of the 2325 winter 
wheat lines genotyped with 12,642 SNPs
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Rogers’ distances estimated for 
the 2325 winter wheat inbred 
lines. Average linkage cluster-
ing was used for ordering the 
individual lines
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Relaxing the significance threshold further led to a decrease 
in the prediction ability. The maximum prediction ability for 
the three traits amounted to 0.41, 0.36, and 0.42 for FHB 
and STB severity as well as plant height, respectively. Inter-
estingly, we observed only marginal differences in predic-
tion ability between the two complex diseases and plant 
height despite the presence of large effect genes for the lat-
ter trait. In line with this finding, we observed absence of a 
strong signal for marker–trait associations for plant height 
on chromosome 4B and 4D (Fig. S3), where the Rht-B1 
and Rht-D1 genes are located. The 2325 lines were not 
fingerprinted for functional markers for Rht-B1 and Rht-
D1 genes in our study. Thus, a likely explanation for the 
absence of large effect QTL on 4B and 4D is the lack of 

SNPs in the used array, which is in tight linkage disequi-
librium with Rht-B1 and Rht-D1. The prediction ability for 
all three traits increased by 8–11  % by applying genomic 
instead of marker-assisted selection (Fig. 5). The choice of 
the genomic selection model had a crucial impact on the 
prediction ability. Using EG-BLUP and RKHS yielded sub-
stantially higher prediction ability compared to BayesCπ 
and RR-BLUP with an average superiority of 10 %.

Discussion

We examined the potential and limits of marker-assisted 
and genomic selection using extensive molecular and 
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phenotypic data from a commercial wheat breeding pro-
gram. Following the optimal allocation of resources in 
multi-stage selection (Utz 1969), the structure of the phe-
notypic data is very unbalanced (Table S1; Fig.  3). We 
applied an unweighted two-step analysis of the phenotypic 
data ameliorating experimental design effects and, thus, 
simplifying further analyses. This two-step approach is not 
expected to lead to a substantial decrease in the power of the 
phenotypic data analysis (Möhring and Piepho 2009) nor of 
the genomic selection results (Schulz-Streeck et al. 2013) as 
compared to a one-step analysis.

Disease severity is only marginally associated with plant 
height

Previous studies revealed a large influence of plant height 
as morphological resistant mechanism against FHB infec-
tion (Mesterházy 1995; Miedaner and Voss 2008). In con-
trast to the previous findings, we observed only a marginal 
correlation of −0.15 (P < 0.05) for FHB despite the large 
variation in plant height ranging from 71 to 113  cm. The 
low correlation can on one hand be explained by the use 
of parents for wheat breeding, which have been improved 
intensively in the past decade for FHB resistance and for 
which negative correlations among traits have been suc-
cessfully broken. On the other hand, the low correlation 
can also be explained by the high frequency of Rht-B1 or 
Rht-D1 genes in Central European germplasm.

Plant height was also described, along with other traits, 
as disease-escape mechanism for STB (Arraiano et  al. 
2009). The low correlation observed between plant height 
and STB severity cannot be explained with intensive resist-
ance breeding during the past decade (O’Driscoll et  al. 
2014) but rather points to the low relevance of morphologi-
cal resistance against STB. Consequently, ideotypes exhib-
iting high harvest index combined with pronounced FHB 
and STB resistance are not impeded by strong negative trait 
correlations.

Balance between power of QTL detection and false 
positive rate

Optimal choice of significance threshold is crucial for a 
successful implementation of marker-assisted selection 
(Knapp 1998; Moreau et al. 1998; Schön et al. 2004). The 
optimum choice should reflect a balance between a high 
QTL detection power and tolerable frequency of false 
positives (Utz and Melchinger 1994; Beavis 1998). We 
observed the highest prediction accuracies at significance 
level of 0.01 (Fig.  4). At this P level, we detected for all 
three traits around 50 effective QTL covering large parts 
of the genome (Fig. S3). Relaxing the significance thresh-
old further yielded a substantially larger number of effec-
tive QTL but led to a decrease in prediction abilities. This 
clearly suggests a substantial increase in the number of 
false positives.

Gowda et  al. (2014) applied association mapping in a 
population of wheat hybrids with gradual differences in 
relatedness and concluded that prediction ability of marker-
assisted selection is not only influenced by knowledge on 
QTL but also exploits relatedness. If relatedness was the 
main driving factor in our study, one would expect a mono-
tonical increase in the prediction accuracies. This was not 
the case (Fig.  4) indicating that relatedness only margin-
ally impacted the accuracy of marker-assisted selection. 
Our findings are in contrast to a recent association mapping 
study for FHB resistance based on a diverse panel of 371 
wheat inbred lines reporting relevance of relatedness (Jiang 
et al. 2015). The observed discrepancy can be explained by 
the six times larger population size in our study as com-
pared to the survey of Jiang et al. (2015) leading to a sub-
stantial larger power of QTL detection.

Cross‑validation is not severely biased by absence 
of clear subpopulations

Cross-validations have been used extensively for QTL 
mapping (Utz et al. 2000) as well as for genomic selection 
(Heslot et al. 2014) and have been recently also suggested 
for association mapping studies (Zhao et  al. 2013; Wür-
schum and Kraft 2014). Previous cross-validation studies in 
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maize revealed that population structure largely impacts the 
results of prediction accuracies (Windhausen et  al. 2012; 
Zhao et  al. 2012; Riedelsheimer et  al. 2013). Therefore, 
cross-validations were often performed within biparental 
families (e.g., Lian et al. 2014). The analyses of the popula-
tion structure of our data revealed presence of some fam-
ily structure but absence of large biparental families and 
clearly defined subpopulation (Fig. 2), which is in accord-
ance to a previous study in wheat (Isidro et al. 2015). Con-
sequently, cross-validations can be performed across all 
2325 inbred lines not being strongly biased by pronounced 
population stratification effects.

Association mapping revealed absence of QTL 
with large effects

We observed in our cross-validation study at a stringent 
significance threshold only low prediction abilities for 
FHB and STB severity with values not passing 0.2 (Fig. 4). 
Our findings are in accordance with those of a previous 
study on the genetic architecture of FHB and STB sever-
ity in a Central European hybrid wheat population pointing 
towards the absence of large effect QTL in Central Euro-
pean wheat lines (Mirdita et al. 2015). The observed lack 
can be explained by the absence of the major QTL Fhb1 
located on chromosome 3BS and Fhb2 located on chro-
mosome 6BS originating from the exotic donor Sumai-3 
(Waldron et  al. 1999; Buerstmayr et  al. 2009). In addi-
tion, large effect QTL detected for plant height such as 
Rht-B1 (Handa et al. 2008), Rht-D1 (Draeger et al. 2007), 
and Ppd-D1 (Beales et  al. 2007) are due to low trait cor-
relations (r = −0.15; P < 0.05) also of minor relevance for 
FHB resistance. For STB severity, the Stb6 (Arraiano et al. 
2001) and Stb3 (Adhikari et al. 2004) resistance genes both 
located on chromosome 6 were previously suggested as 

candidates substantially contributing to the resistance in 
European winter wheat. In contrast, we have not detected 
any SNPs located on chromosome 6 exhibiting small P val-
ues (Fig. S3).

Presence of small effect QTL hampers an efficient 
pyramiding strategy for FHB and STB disease severity. 
Consequently, marker-assisted selection has only limited 
potential. Genomic selection tackles the complex genetic 
architecture more properly and is therefore an attractive 
alternative solution.

Modeling epistasis in genomic selection substantially 
increases prediction abilities

We used two genomic selection approaches, EG-BLUP and 
RKHS, modeling besides main also epistatic effects (Jiang 
and Reif 2015). For all three traits, the genomic selection 
approaches including epistasis (EG-BLUP, RKHS) outper-
formed those focusing exclusively on main effects (RR-
BLUP, BayesCπ; Fig.  5). The superiority of RKHS has 
been previously observed for the selfing species wheat and 
barley (Heslot et al. 2012; Pérez-Rodríguez et al. 2012) and 
is in contrast to findings in the outcrossing species maize 
(Jiang and Reif 2015). The observed differences depend-
ing on the mating system are in line with a study report-
ing a major impact of additive by additive epistasis on the 
genetic architecture of heterosis for rice but not for maize 
(Garcia et  al. 2008). Consequently, for wheat breeding, it 
seems beneficial to routinely implement genomic selection 
approaches modeling main and epistatic effects leading to 
substantially improved prediction accuracies.

A recent simulation study proposed fast track breed-
ing strategies exclusively based on genomic selection if 
prediction accuracies surpassed 0.65 (Longin et al. 2015). 
We observed prediction abilities, i.e., correlations between 
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observed and predicted genotypic values not standardized 
with the square root of heritability, of around 0.6 for FHB 
and of 0.5 for STB severity (Fig. 5). Taking the heritabil-
ity estimates into account (Fig. 3) led to the conclusion that 
fast track genomic selection strategies are spurring rapid 
advances in breeding for FHB and STB resistance in wheat.
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